
 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



International Mathematics
TOURNAMENT OF THE TOWNS

Junior O-Level Paper Fall 2005.1

1. In triangle ABC, points D, E and F are the midpoints of BC, CA and AB respectively, while
points L, M and N are the feet of the altitudes from A, B and C respectively. Prove that
one can construct a triangle with the segments DN , EL and FM .

2. Each corner of a cube is labelled with a number. In each step, each number is replaced
with the average of the labels of the three adjacent corners. All eight numbers are replaced
simultaneously. After ten steps, all labels are the same as their respective initial values. Does
it necessarily follow that all eight numbers are equal initially?

3. A segment of length 1 is cut into eleven shorter segments, each with length at most a. For
what values of a will it be true that any three of the eleven segments can form a triangle,
regardless of how the initial segment is cut?

4. A chess piece may start anywhere on a 15 × 15 chessboard. It can jump over 8 or 9 vacant
squares either vertically or horizontally, but may not visit the same square twice. At most
how many squares can it visit?

5. One of 6 coins is a fake. We do not know the weight of either a real coin or the fake coin,
except that the real coins all weigh the same but different from the fake coin. Using a scale
which shows the total weight of the coins being weighed, how can the fake coin be found in 3
weighings?

Note: The problems are worth 3, 3, 4, 4 and 5 points respectively.

1Courtesy of Professor Andy Liu.



Solution to Junior O-Level Fall 2005

1. D is the midpoint of the hypotenuse of the right triangle NBC. Hence DN = 1
2
BC. Similarly,

EL = 1
2
CA and FM = 1

2
AB. Hence the segments DN, EL and FM can form a triangle half

the linear dimensions of triangle ABC.
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2. The eight vertices of a cube may be painted black and white, with four of each colour, such
that no two vertices of the same colour are adjacent. Label the white vertices with 0s and
label the black vertices with 1s. In each move, the 0s become 1s and vice versa. In ten moves,
all labels return to their initial values, but not all labels have the same value.
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3. Let the lengths of the segments be a = a1 ≥ a2 ≥ · · · ≥ a11. Since 1 = a1+a2+· · ·+a11 ≤ 11a,
we must have a ≥ 1

11
. On the other hand, if a = 1

10
, we may take a1 = a2 = · · · = a9 = 1

10

and a10 = a11 = 1
20

. Then the shortest two segments will not form a triangle with the longest.
A larger value of a will only make the longest segment longer, and does not help. Now let
1
11
≤ a < 1

10
. Then a10 + a11 = 1− (a1 + a2 + · · ·+ a9) ≥ 1− 9

10
= 1

10
> a1. It follows that any

three of the segments can form a triangle.



4. The diagram below shows the 15× 15 chessboard divided into a central cross of width 3 and
four quadrants each a 6 × 6 square. The numbering shows that all 144 squares in the four
quadrants may be visited. If more squares may be visited, then the chess piece must visit one
of the squares of the central cross. However, from any such square, the piece can never get
to any of the 144 squares in the four quadrants. Even if it can visit all squares in the central
cross, the total of 81 is well short of 144.

1 23 45 67 89 1011 12

1314 1516 1718 1920 2122 2324

25 2627 2829 3031 3233 3435 36

3738 3940 4142 4344 4546 4748

49 5051 5253 5455 5657 5859 60

6162 6364 6566 6768 6970 7172

73 7475 7677 7879 8081 8283 84

8586 8788 8990 9192 9394 9596

97 9899 100101 102103 104105 106107 108

109110 111112 113114 115116 117118 119120

121 122123 124125 126127 128129 130131 132

133134 135136 137138 139140 141142 143144

5. Let the coins be A, B, C, D, E and F. In three weighings, we determine the average weight
m of C and E, the average weight n of D and F, and the average weight k of B, E and F. If
m = n = k, the fake coin is A. If m = n 6= k, the fake coin is B. If m 6= n = k, the fake coin
is C. If k = m 6= n, the fake coin is D. If k 6= m 6= n 6= k, then the fake coin is E or F. This
can be distinguished since 2m + n = 3k if it is E, and m + 2n = 3k if it is F.
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1. Do there exist positive integers a, b, n such that n2 < a3 < b3 < (n + 1)2?

2. A segment of length
√

2 +
√

3 +
√

5 is given. Can a segment of length 1 be constructed using
a straight-edge and a compass?

3. One of 6 coins is a fake. We do not know the weight of either a real coin or the fake coin,
except that the eal coins all weigh the same, but different from the fake coin. Using a scale
which shows the total weight of the coins being weighed, how can the fake coin be found in 3
weighings?

4. On all three sides of a right triangle ABC, external squares are constructed, their centres
being D, E and F . Prove that the ratio of the area of triangle DEF to the area of triangle
ABC is

(a) greater than 1;

(b) at least 2.

5. A cube lies on the plane, with a letter A on its top face. In each move, it is rolled over one
of its bottom edges onto the adjacent face. After a few moves, the cube returns to its initial
position, again with the letter A on its top face. Is it possible for the letter A to have made
a 90◦ turn?

Note: The problems are worth 3, 3, 4, 2+2 and 5 points respectively.

1Courtesy of Professor Andy Liu.



Solution to Senior O-Level Fall 2005

1. Suppose such integers a, b and n exist. Since a + 1 ≤ b, n2 < a3 < (a + 1)3 < (n + 1)2. Note
that n2 < a3 < a4, so that n < a2. Hence (a + 1)3 > a3 + 3a2 + 1 > n2 + 2n + 1 = (n + 1)2,
which is a contradiction.

2. Construct any segement of length x. Construct a right triangle with legs x and x. Then the
hypotenuse will have length

√
2x. Construct a right triangle with legs x and

√
2x. Then the

hypotenuse will have length
√

3x. Construct a right triangle with legs
√

2x and
√

3x. Then
the hypotenuse will have length

√
5x. Construct a segment PQ of length (

√
2 +

√
3 +

√
5)x

and extend it to R such that QR = x. On another ray from P , mark off the point S where
PS has the given length

√
2 +

√
3 +

√
5. Through R, draw the line parallel to QS, cutting

the ray at T . Then triangles PQS and PRT are similar, so that ST
PS

= QR
PQ

. It follows that
ST = 1.

3. Let the coins be A, B, C, D, E and F. In three weighings, we determine the average weight
m of C and E, the average weight n of D and F, and the average weight k of B, E and F. If
m = n = k, the fake coin is A. If m = n 6= k, the fake coin is B. If m 6= n = k, the fake coin
is C. If k = m 6= n, the fake coin is D. If k 6= m 6= n 6= k, then the fake coin is E or F. This
can be distinguished since 2m + n = 3k if it is E, and m + 2n = 3k if it is F.

4. Denote the area of triangle T by [T ]. Since 6 BCD+ 6 BCA+ 6 ACE = 45◦+90◦+45◦ = 180◦,
C lies on DE. Since 6 BCA + 6 BFA = 90◦ + 90◦ = 180◦, BCAF is a cyclic quadrilateral.
Hence 6 FCD = 6 FCB + 6 BCD = 6 FAB + 6 BCD = 45◦ + 45◦ = 90◦. Let P be the point
of intersection of FC and AB.
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(a) Since BD and AE are perpendicular to DE, they are parallel to CF . Since CF > CP ,
[DCF ] > [BCP ] and [ECF ] > [ACP ]. Hence [DEF ] > [ABC].

(b) Let K be the other point of intersection of DE with the circumcircle of triangle ABC.
Then FQ is a diameter of the circle. Hence PF = PQ ≥ PC so that CF ≥ 2CP . It
follows that [DCF ] ≥ 2[BCP ] and [ECF ] ≥ 2[ACP ], so that [DEF ] ≥ 2[ABC].

5. The vertices of a cubic lattice may be painted black and white such that no two vertices of
the same colour are adjacent. The vertices of the cube are painted in the same colours as
the vertices of its initial position in the cubic lattice. When the cube is rolled over, its white
vertices always go to white vertices of the cubic lattice, and its black vertices always go to
black vertices of the cubic lattice. When it returns to its initial position, again with the letter
A on its top face, the letter A cannot have made a 90◦ turn as this requires the vertices of the
cube to have different colours from the corresponding vertices of the cubic lattice.
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1. A palindrome is a positive integer which reads the same from left to right and from right to
left. For example, 1, 343 and 2002 are palindromes, while 2005 is not. Is it possible to find
2005 values of n such that both n and n + 110 are palindromes?

2. The extensions of the sides AB and DC of a convex quadrilateral ABCD intersect at the
point K. M and N are the midpoints of AB and CD, respectively. Prove that if AD = BC,
then triangle MNK is obtuse.

3. Initially, there is a rook on each of the 64 squares of an 8× 8 chessboard. Two rooks attack
each other if they are in the same row or column, and there are no other rooks directly in
between. In each move, one may take away any rook which attacks an odd number of other
rooks still on the chessboard. What is the maximum number of rooks that can be removed?

4. Each side of a polygon is longer than 100 centimetres. Initially, two ants are on the same edge
of the polygon, at a distance 10 centimetres from each other. They crawl along the perimeter
of the polygon, maintaining the distance of 10 centimetres measured along a straight line.

(a) Suppose the polygon is convex. Is it always possible for each point on the perimeter of
the polygon to be visited by both ants?

(b) Suppose the polygon is not necessarily convex. Is it always possible for each point on
the perimeter of the polygon to be visited by at least one of the ants?

5. Determine the largest positive integer N for which there exist a unique triple (x, y, z) of
positive integers such that 99x + 100y + 101z = N .

6. There are 1000 pots each containing varying amounts of jam, not more than 1
100

-th of the total.
Each day, exactly 100 pots are to be chosen, and from each chosen pot, the same amount of
jam is eaten. Prove that it is possible to eat up all the jam in a finite number of days.

Note: The problems are worth 3, 5, 6, 2+4, 7 and 8 points respectively.

1Courtesy of Professor Andy Liu.



Solution to Junior A-Level Fall 2005

1. We can choose n = 1099 · · · 9901. Clearly, n is a palindrome. Since n + 110 = 1100 · · · 0011,
it is also a palindrome. Since the number of 9s in n is arbitrary, we can certainly find 2005
such values.

2. Suppose AN < BN . In triangles MAN and MBN , we have MA = MB and MN = MN .
Hence 6 AMN < 6 BMN . Since 6 AMN + 6 BMN = 180◦, we have 6 KMN > 90◦. Similarly,
MD < MC implies 6 KNM > 180◦. Suppose AN ≥ BN and MD ≥ MC. In triangles
DAN and CBN , we have DN = CN and MN = MN . Hence 6 ADN ≥ 6 BCN . Similarly,
6 DAM ≥ 6 CBM . Since 6 ADN+ 6 DAM+ 6 BCN+ 6 CBM = 360◦, 6 ADN+ 6 DAM ≥ 180◦.
However, this is a contradiction since 6 ADN + 6 DAM = 180◦ − 6 AKD < 180◦.
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3. First, note that none of the corner rooks may be removed since each always attacks two other
rooks. Moreover, we cannot leave behind only the four corner rooks, as otherwise the last to
be taken away will attack two or zero other rooks. We can take away as many as 64-4-1=59
rooks in two stages, as shown in the diagrams below.

1 2 3 4 5 6
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20 21 22 23 24 25

26 27 28 29 30 31

32 33 34 35 36 37

38 39 40 41 42 43

44 45 46 47 48 49
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4. (a) Let ABCD be a rhombus with BD horizontal and less than 10 centimetres long. Then
the segment XY joining the two ants is almost vertical. Let X be the ant initially closer
to A and Y be the ant initially closer to C. Then X can never visit C while Y cannot
visit A.

(b) Modify the rhombus ABCD by moving C vertically towards A until AC is less than 10
centimetres long. Then the segment XY joining the two ants is still almost vertical. If
XY is initially on AB or AD, neither X nor Y can visit C. If XY is initially on CB or
CD, neither X nor Y can visit A.



5. We claim that N = 5251 is the largest value. We first show that 99x + 100y + 101z = 5251
has the unique positive integral solution (50,2,1). Note that x + y + z = 52 or 53 since
51 × 101 < 5251 < 54 × 99. Suppose x + y + z = 52. Subtracting 100 times this from the
given equation, we have z − x = 51. We can only have (x, y, z) = (0, 1, 51), but this is not
admissible. Suppose x + y + z = 53. Subtracting the given equation from 100 times this, we
have x − z = 49. Neither (49,4,0) nor (51,0,2) is admissible, leaving (x, y, z) = (50, 2, 1) as
the unique solution. We next show that for N = 5251 + k, 1 ≤ k ≤ 99, we have at least two
positive integral solutions to 99x+100y+101z = N . For 1 ≤ k ≤ 49, they are (50−k, k+2, 1)
and (51− k, k, 2). For 50 ≤ k ≤ 97, they are (1, 100− k, k − 48) and (2, 98− k, k − 47). For
k = 98, they are (52,1,1) and (1,2,50). For k = 99, they are (51,2,1) and (1,1,51). Finally, for
N ≥ 5351, modify each of the two solutions for N − 99 by adding 1 to x.

6. More generally, let there be m pots each containing varying amounts of jam, not more than
1
n
-th of the total, where n ≤ m. Each day, exactly n pots are to be chosen, and from each

chosen pot, the same amount of jam is eaten. We use induction on n. The basis n = 1 is
trivial as we can eat up the jam one pot at a time. Suppose there is a strategy to eat all the
jam for some n ≥ 1. We now eat from n + 1 pots each day. Let P be the pot with the most
jam. We consider two cases:
Case 1. P contains less than 1

n+1
of the total amount of jam.

Then m > n + 1. Choose the n + 1 pots containing the least combined amount of jam. Our
plan is to eat from each of them the amount equal to what is in the pot with the least amount,
so that it becomes empty. However, we must ensure that the condition in the hypothesis still
holds afterwards. If P will contain more than 1

n+1
of the remaining amount of jam, then we

modify our plan by reducing the amount eaten from each of the chosen pots, so that P will
contain exactly 1

n+1
of the remaining amount of jam. We then proceed to Case 2. On the

other hand, if the condition in the hypothesis holds after our original plan is carried out,
we have reduced the number of non-empty pots by one. At some point before or when this
number becomes n + 1, P will contain exactly 1

n+1
of the remaining amount of jam, and we

proceed to Case 2.
Case 2. P contains exactly 1

n+1
of the total amount of jam.

First note that each pot other than P contains at most 1
n

of the total amount of jam not in P.
Hence we may apply the strategy when we eat from n pots each day to the pots other than
P. At the same time, we also eat from P each day, so that we are eating from n + 1 pots as
required. By the induction hypothesis, we can eat all the jam from the pots other than P.
Since we eat from P each day exactly 1

n
of what we eat from the other pots, and P starts with

exactly 1
n

of the jam in the other pots initially, we will finish off the jam in P at the same
time as we empty the other pots.



International Mathematics
TOURNAMENT OF THE TOWNS

Senior A-Level Paper Fall 2005.

1. For which positive integers n can one find distinct positive integers a1, a2, . . . , an such that
a1

a2
+ a2

a3
+ · · ·+ an

a1
is also an integer?

2. Each side of a polygon is longer than 100 centimetres. Initially, two ants are on the same edge
of the polygon, at a distance 10 centimetres from each other. They crawl along the perimeter
of the polygon, maintaining the distance of 10 centimetres measured along a straight line.

(a) Suppose the polygon is convex. Is it always possible for each point on the perimeter of
the polygon to be visited by both ants?

(b) Suppose the polygon is not necessarily convex. Is it always possible for each point on
the perimeter of the polygon to be visited by at least one of the ants?

3. Initially, there is a rook on each of the 64 squares of an 8× 8 chessboard. Two rooks attack
each other if they are in the same row or column, and there are no other rooks directly in
between. In each move, one may take away any rook which attacks an odd number of other
rooks still on the chessboard. What is the maximum number of rooks that can be removed?

4. On a circle are a finite number of red points. Each is labelled with a positive number less than
or equal to 1. The circle is to be divided into three arcs so that each red point is in exactly
one of them. The sum of the labels of all red points in each arc is computed. This is taken to
be 0 if the arc contains no red points. Prove that it is always possible to find a division for
which the sums on any two arcs will differ by at most 1.

5. In triangle ABC, 6 A = 26 B = 46 C. Their bisectors meet the opposite sides at D, E and F
respectively. Prove that DE = DF .

6. A blackboard is initially empty. In each move, one may either add two 1s, or erase two copies
of a number n and replace them with n−1 and n+1. What is the minimum number of moves
needed to put 2005 on the blackboard?

Note: The problems are worth 3, 2+3, 5, 6, 7 and 8 points respectively.



Solution to Senior A-Level Fall 2005

1. For n = 1, we may take a1 = 1 and a1

a1
= 1 is indeed an integer. For n = 2, consider any

a1 < a2. We may assume that they are relatively prime to each other. Then a1

a2
+ a2

a1
=

a2
1+a2

2

a1a2
.

This is never an integer since the factor a2 in the denominator cannot be cancelled out. For
n ≥ 3, take ak = (n − 1)k−1 for 1 ≤ k ≤ n. These are distinct integers since n − 1 > 1. The
desired sum is 1

n−1
+ 1

n−1
+ · · ·+ 1

n−1
+(n− 1)n−1 = (n− 1)n−1 +1, which is an integer. Hence

n = 2 is the only impossible case.

2. (a) Let ABCD be a rhombus with BD horizontal and less than 10 centimetres long. Then
the segment XY joining the two ants is almost vertical. Let X be the ant initially closer
to A and Y be the ant initially closer to C. Then X can never visit C while Y cannot
visit A.

(b) Modify the rhombus ABCD by moving C vertically towards A until AC is less than 10
centimetres long. Then the segment XY joining the two ants is still almost vertical. If
XY is initially on AB or AD, neither X nor Y can visit C. If XY is initially on CB or
CD, neither X nor Y can visit A.

3. First, note that none of the corner rooks may be removed since each always attacks two other
rooks. Moreover, we cannot leave behind only the four corner rooks, as otherwise the last to
be taken away will attack two or zero other rooks. We can take away as many as 64-4-1=59
rooks in two stages, as shown in the diagrams below.
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4. For any arc A, denote by f(A) the sum of the labels of the red points on A. Since there
are finitely many red points, there are finitely many ways to divide them among three arcs.
For each division, let the arcs be L, M and S, with f(L) ≥ f(M) ≥ f(S). Choose among
the divisions the one in which f(L) − f(S) is minimum. We claim that for this division,
f(L) − f(S) ≤ 1. Suppose that this is not so. Now L and S are adjacent to each other.
Let R be the red point on L closest to S and let r be its label. Consider the division
(L′, M ′, S ′) where the only change is that R moves from L to S. If f(L)− r > f(S) + r, then
f(L′) = max{f(M), f(L) − r} while f(S ′) = min{f(M), f(S) + r}. On the other hand, if
f(L)− r ≤ f(S)+ r, then f(L′) = max{f(M), f(S)+ r} while f(S ′) = min{f(M), f(L)− r}.
We have f(L′) − f(S ′) < f(L) − f(S) since r ≤ 1, and f(M) cannot be equal to f(L) and
f(S) simultaneously. However, this contradicts our minimality assumption.



5. Let I be the incentre of triangle ABC. Let 6 BCI = 6 ACI = θ. Then 6 ABI = 6 CBI = 2θ
and 6 CAI = 6 BAI = 4θ. Hence 6 AIE = 6 BID = 6 BDI = 6θ, 6 AIF = 6 AFI = 5θ and
6 AEI = 4θ. Let AI = x and DI = y. Then AF = IE = x and BD = BI = x + y. In
triangle BAD, AB

AI
= DB

DI
, so that BF = (DB

DI
− AF

AI
)AI = x2

y
. In triangle ABE, EA

EI
= BA

BI
, so

that AE = (AF+FB
BI

)EI = x2

y
= BF . It follows that triangles EAD and FBD are congruent

to each other, so that DE = DF .
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6. First Solution:
Whenever we write n on the blackboard, we also write n2 on a whiteboard, and whenever
we erase n from the blackboard, we also erase n2 from the whiteboard. Observe that when
n appears in the smallest number of steps, it clearly comes from trading in two copies of
n − 1. Hence n − 1 will not appear but n − 2 will. The step before involves trading in two
copies of n − 2 for one of the (n − 1)s, and so on. Hence the numbers on the blackboard
other than n are n − 2, n − 3, . . . , 3, 2, 1, with an extra 1 if it is needed to make the total of
the numbers even. Let f(n) denote the minimum number of steps in order for the positive
integer n to appear on the blackboard. In a move where we take two 1s, the sum of all
the numbers on the whiteboard increases by 1+1=2. In a move where we trade in two ns
for n + 1 and n − 1, this sum also increases by (n + 1)2 + (n − 1)2 − n2 − n2 = 2. It
follows that f(n) = 1

2
(n2 + (n − 2)2 + (n − 3)2 + · · · + 22 + 12 + 12) for n ≡ 0, 1 (mod 4),

and f(n) = 1
2
(n2 + (n − 2)2 + (n − 3)2 + · · · + 22 + 12) for n≡ 2, 3 (mod 4). In particular,

f(2005) = 1
2
(20052 + 2003·2004·4007

6
+ 1) = 1342355520.

Second Solution:
Let f(n) denote the minimum number of steps in order for the positive integer n to appear
on the blackboard. We claim that

f(n)− f(n− 1) =



n2 − 2n + 4

2
if n ≡ 0 (mod 4);

n2 − 2n + 3

2
if n ≡ 1 (mod 2);

n2 − 2n + 2

2
if n ≡ 2 (mod 4).

From this, we have f(n)− f(n− 4) = 2n2 − 10n + 19. Iterating this recurrence, we have

f(n) =


2n3 − 3n2 + 13n

12
if n ≡ 0, 1 (mod 4);

2n3 − 3n2 + 13n− 6

12
if n ≡ 2, 3 (mod 4).

In particular, f(2005) = 2005
12

(2 · 20052 − 3 · 2005 + 13) = 1342355520.



Observe that when n appears in the smallest number of steps, it clearly comes from trading
in two copies of n− 1. Hence n− 1 will not appear but n− 2 will. The step before involves
trading in two copies of n − 2 for one of the (n − 1)s, and so on. Hence the numbers on the
blackboard other than n are n−2, n−3, . . . , 3, 2, 1, with an extra 1 if it is needed to make the
total of the numbers even. We now justify our claim. Consider first the case n ≡ 0 (mod 4).
After f(n−1) steps, we have the numbers 1, 2, 3, . . . , n−3, n−1 on the blackboard. To make
n− 2 reappear, we take two 1s and trade upwards to obtain in succession two 2s, two 3s, and
so on. After n− 3 steps, we have two (n− 3)s, and we have n− 2 in n− 2 steps. Note that we
have two 1s already. Thus it takes another (n − 3) − 1 steps to make n − 3 reappear. Since
the number of 1s alternates between one and two, it takes n−4 steps to make n−4 reappear,
(n− 5)− 1 steps to make n− 5 reappear, and so on. It follows that it takes altogether

(n− 2) + (n− 3) + · · ·+ 3 + 2 + 1− n− 2

2

steps to obtain the numbers 1, 2, 3, . . . , n−2, n−1. To make n appear, we take two 1s and trade
upwards so that after n steps, we have the numbers 1, 1, 2, 3, . . . , n−3, n−2, n. It follows that

f(n)− f(n− 1) =
(n− 2)(n− 1)

2
− n− 2

2
+ n =

n2 − 2n + 4

2
as desired. For n≡1 (mod 4),

we have f(n)− f(n− 1) =
(n− 2)(n− 1)

2
− n− 1

2
+ n =

n2 − 2n + 3

2
. For n≡2 (mod 4), we

have f(n)− f(n− 1) =
(n− 2)(n− 1)

2
− n− 2

2
+ (n− 1) =

n2 − 2n + 2

2
. For n ≡ 3 (mod 4),

we have f(n)− f(n− 1) =
(n− 2)(n− 1)

2
− n− 3

2
+ (n− 1) =

n2 − 2n + 3

2
. Thus our claim

is justified.
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1. In triangle ABC angle A is equal to 60◦. The perpendicular from the midpoint of side AB
intersects AC at the point N . The perpendicular from the midpoint of side AC intersects AB
at the point M . Prove that CB = MN . (R.G. Zhenodarov)

A

N

B

C

L

K

M

Solution. By the property of
the perpendicular from the midpoint
NA = NB, thus triangle ANB is
isosceles. Angle A is equal to 60◦,
this means that triangle ANB is equi-
lateral and AN = AB. Similarly,
triangle AMC is equilateral, AM =
AC. Triangles ACB and AMN are
equal according to the equality of two
sides and angle between them. Hence
BC = MN .

2. Consider an n × n table. In each square of its first column someone has written the number
1, in each square of the second column, number 2, and so on. Then someone erased the
numbers on the diagonal which connects top-left with bottom-right angle of the table. Prove
that the sum of the numbers above the diagonal is twice the sum of the numbers under it.
(S.A.Zaitsev)

Solution 1. For each square on the diagonal compare the sums of the numbers situated to
the left of it and situated above it. If the square is situated at the intersection of the k-th row
and the k-th column the sum to the left is equal to 1 + 2 + · · ·+ (k − 1) = k(k − 1)/2, while
the sum of the numbers above it is equal to k(k-1), that is two times more. Hence the sum
of all numbers above the diagonal is two times more than the sum of the numbers situated to
the left of it.

Solution 2.

2 3 4 . . . n

1 3 4 . . . n

1 2 4 . . . n

1 2 3 . . . n

. . . . . . . . . . . . . . .

1 2 3 4 . . .

1 2 3 . . . n− 1

1 1 2 . . . n− 2

1 2 1 . . . n− 3

1 2 3 . . . n− 4

. . . . . . . . . . . . . . .

1 2 3 4 . . .

Solution 3. In the original table (left picture) there are (n − 1) ones, (n − 2) twos, (n −
3) threes and so on. Let us subtract from each number above the diagonal the number
symmetrical to it with respect to the diagonal. We get the picture to the right. It has equal
numbers situated on the diagonals above the main one and parallel to it: (n−1) ones, (n−2)
twos, (n − 3) threes and so on. We decreased the upper sum by the lower sum and got the
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lower sum. This means that the upper sum was two times more than the lower one. We are
going to show that after the subtraction of the lower sum from the upper sum we obtain the
upper sum. From i-th row of the upper sum we subtract i-th column of the lower one. Since
i-th row of the upper sum is given by (i + 1), (i + 2), . . . , (n− 1), n, while i-th column of the
lower sum is i, i, . . . , i, after the subtraction we get the row 1, 2, . . . , (n− i), which is exactly
the (n − i + 1)-th line of the lower sum. After making the subtraction for every i we will
obtain the lower sum. Consequently, the upper sum is two times more than the lower sum.

3. Consider an arbitrary number a > 0 such that the inequality 1 < xa < 2 has exactly 3 integer
solutions. How many integer solutions may have the inequality 2 < xa < 3?

Find all possibilities. (A.K. Tolpygo)

Answer. 2, 3 or 4 solutions.

Solution 1. The first inequality is equivalent to 1/a < x < 2/a. There are 3 integers in the
interval (1/a, 2/a). They divide it into two segments 1 unit long each and two segments not
more than 1 unit long each one along the edges. Therefore, the inequality 2 < 1/a ≤ 4 for
the length of the segment (1/a, 2/a) holds. Similarly if there are k integers in the segment t
units long, then k− 1 < t ≤ k + 1. It is equivalent to the inequality t− 1 ≤ k < t + 1. Second
segment (2/a, 3/a) has the same length. Substituting t = 1/a and taking into consideration
the inequalities for 1/a, we obtain 1 < 1/a− 1 ≤ k < 1/a + 1 ≤ 5, i.e. k = 2, 3 or 4. All three
cases are possible: k = 2 when a = 3/8 (x = 6, 7); k = 3 when a = 1/4 (x = 9, 10, 11); k = 4
when a = 5/17 (x = 7, 8, 9, 10).

Solution 2. This problem also can be solved using graphical methods. We will give just
a sketch of such a solution here. (Everything becomes evident after thorough consideration
of the graphical representation). The inequalities can be rewritten as 1/a < x < 2/a and
2/a < x < 3/a. Consider the vertical axis on the coordinate plane as x, and the horizontal
axis as 1/a. Draw three new lines: x = 1/a, x = 2/a, x=3/a. We see that values of 1/a
belonging to the intervals (2.5, 3) and (3, 3.5], and also 1/a = 4 are right for us. Thus it is
possible to find 2,3 or 4 integer solutions.

4. Three children Ann, Borya and Vitya sit at the round table and eat nuts. Children have more
than 3 nuts. At the beginning Ann owns all nuts. If Ann has even number of nuts, she divides
them into two equal parts and gives to Borya and Vitya and if the number of her nuts is odd,
then she eats 1 nut and then does the same. Then the next child (one by one, around the
table) does the same: divides all his (or her) nuts between two others eating one nut in the
process, if it is necessary. And so on. Prove that:

(a) at least 1 nut will be eaten,

(b) the children won’t eat all nuts.

(M.N. Vyaliy)

(a) Solution 1. (a) Assume that Ann has a nuts at the very beginning. Suppose that no
nuts are eaten. Write down couple of first steps:
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Ann Borya Vitya

Beginning a 0 0

1 step 0 a/2 a/2

2 step a/4 0 3a/4

3 step 5a/8 3a/8 0

Observe that after n-th step one of the children
has 0 nuts, while two other ones have xa/2n and
ya/2n, where x and y are odd numbers. This
proposition can be easily proved. If it is true for
the n-th step, then after the next one the amounts
of nuts will be 0, xa/2n+1 and (2y + x)a/2n+1,
where x and 2y+x are also odd, i.e. the statement
is true again. As the statement holds after the first
step, it also holds after the second one, thus after
the third one also, and so on. But since after each

step each child has an integer amount of nuts, the number a should be divisible by 2n for
every integer n, which is impossible. Therefore, at least one nut will be eaten.

Solution 2. Denote by a the number of nuts owned by the child who will divide next, and
the number for the next person by b. If no nuts are eaten, after the next step a′ = b+a/2 and
b′ = a/2. Observe that |a′ − 2b′| = 1

2
|a− 2b|. This means that such difference after each step

is divided by two but remains integer. This is impossible, so at least one nut will be eaten .

(b) If there are more than 3 nuts at any moment, the proposition is proved. Otherwise,
consider the moment of time when the total amount of nuts is three for the first time. After
any step exactly two persons own nuts and the one with the greater amount divides next.
Consequently, when the total amount is three, the dividing person owns 2 nuts. So after next
step the situation will be exactly the same, again with 3 nuts.

5. Peter has n3 white 1 × 1 × 1-cubes. He wants to make a n × n × n-cube using them, and
he wants to make this cube totally white from the outside. What is the minimum number of
sides of the cubes Vasya has to paint in black to prevent Peter from doing this?

(a) n=2,

(b) n=3

(R.G. Zhenodarov) Answers (a) 2 sides (b) 12 sides

(a) Solution. Evidently, one painted side is not enough. But if we paint two opposite sides
on one cube, one of them always will be on the outside.

(b) Solution. It is enough to paint all sides of two cubes, because when constructing the
3 × 3 × 3 cube we can fully hide only 1 cube. Now we will show how Peter can accomplish
his task if there are 11 or less painted sides. In this case not more than one cube can be fully
painted, not more than 5 can have more than 1 painted side. At first, choose the cube with
maximum number of painted sides and put it into the center. There are no fully painted cubes
among the remaining ones, thus all of them can be used for the center cube of the side. Now
choose 6 more cubes with the greatest number of painted sides. Now there are no cubes with
two or more painted sides left. Therefore, all other painted sides can also be easily hidden:
one painted side of the cube can always be hidden.
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1. Consider a convex polyhedron with 100 edges. All its vertices were cut off near themselves
using sharp knives planes (it was done in such a way that these planes have no intersections
inside or on the boundary of the polyhedron). Find out for the resulting polyhedron:

(a) number of vertices,

(b) number of edges.

(G.A.Galperin)

Answer. a) 200; b) 300.

Solution. Observe that there are two vertices of the new polyhedron on each edge of the
given one, and there are 3 edges starting in each vertex of the new polyhedron. Consequently,
there are 2 · 100 = 200 vertices and 100·3

2
= 300 edges in the resulting polyhedron.

2. Is it possible to find two such functions p(x) and q(x) that p(x) is an even function, while
p
(
q(x)

)
is an odd function (other than identically equal to 0) ? (A.D. Blinkov, V.M.

Gurovic)

Answer. Yes, it is possible.

Solution. Consider functions p(x) = cos x and q(x) = π
2
− x. It is evident that p(x) is an

even function, while p(q(x)) = sin x is odd an odd function. There are also lots of different
solutions.

3. Consider an arbitrary number a > 0. We know that the inequality 10 < ax < 100 has exactly
5 positive integer solutions. How many solutions in positive integers may have the inequality
100 < ax < 1000?

Find all possibilities. (A.K. Tolpygo)

Answer. 4,5 or 6.

Solution. The inequality 10 < ax < 100 can be rewritten as 10 < 10bx < 100 or 1 < bx < 2.
Similarly 100 < ax < 1000 is equivalent to 2 < bx < 3. If n is the minimal integer solution
of 1 < bx < 2, then b(n − 1) < 1 < bn and b(n + 4) < 2 < b(n + 5). Summing up the
first inequality with itself and with the second one we obtain b(2n − 2) < 2 < b(2n) and
b(2n + 3) < 3 < b(2n + 5). Hence the inequality 2 < bx < 3 has from 4 and up to 6 integer
solutions (2n, . . . , 2n + 3 are always solutions, while 2n− 1 and 2n + 4 may be and may not).
Actually, all 3 cases are possible:

- b = 5
23

; solutions of the first inequality are 5, 6, 7, 8, 9, solutions of the second one are
10, 11, 12, 13.

- b = 5
26

; solutions of the first inequality are 6, 7, 8, 9, 10, solutions of the second one are
11, 12, 13, 14, 15.

- b = 5
27

; solutions of the first inequality are 6, 7, 8, 9, 10, solutions of the second one are
11, 12, 13, 14, 15, 16.
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4. Quadrangle ABCD is inscribed and AB = AD. A point M lays on the side BC, while a
point N lays on the side CD. Angle MAN equals to the half of the angle BAD. Prove that
MN = BM + ND. (M.I.Malkin) Solution
1. Denote by R the point symmetrical to B with respect to AM . Observe that in the same
time R is symmetrical to D with respect to AN (since AD = AB and angle MAN is equal
to the sum of angles NAD and MAB). As ABCD is inscribed, the sum of the angles ABC
and ADC is equal to 180◦. Consequently the sum of the angles ARM and ARN is equal to
180◦, hence MRN is a straight line. Thus BM + ND = MR + NR = MN .

Solution 2. Rotate triangle MAB around the point A in such a way that AB coincides
with AD. Denote by M ′ the image of the point M when we perform this rotation. Since
ABCD is inscribed the sum of the angles ABC and ADC is equal to 180◦ , so and the sum
of the angles ADN and ADM ′ is equal to 180◦. This means that M ′DN is a straight line.
Triangles NAM ′ and NAM are equal by the equality of two sides and angle between them
(angles NAM and M ′AN are equal since angle MAN is equal to the sum of NAD and
MAB, AN is the common side, AM and AM ′ are equal by the construction). Consequently
MN = M ′N = ND + DM ′ = ND + BM .

5. Peter has n3 white 1 × 1 × 1-cubes. He wants to make an n × n×-cube using them, and he
wants to make this cube totally white from the outside. What is the minimum number of
sides of the cubes Vasya has to paint in black to prevent Peter from doing this?

(a) n = 3,

(b) n = 1000

(R.G.Zhenodarov)

Answer. (a) 12; (b)1999999986.

Remark: In the n×n×-cube 8 corner bricks have 3 outside facets, 12(n−2) adjoining to the
edges bricks have 2 outside facets, 6(n− 2)2 bricks have one outside facets, other bricks have
no outside facets. In order to prevent Peter from putting a cube into a corner, Vasya has to
paint at least two its sides (opposite ones). In order to make it impossible to put a cube on
the edge one has to paint at least 4 its facets (all but 2 opposite ones). In order to prevent
Peter from putting a cube on the side Vasya has to paint all 6 sides of the cube.

(a). Solution. In the case n = 3 it is enough for Vasya to fully paint 2 cubes (12 sides)
to prevent Peter from fulfilling his task as one of these sides will necessarily remain on the
outside. If Vasya has painted not more than 11 sides, then Peter is able to choose 8 cubes
that have not more than one painted side (otherwise the number of painted sides is not
less than 2 × (27 − 7) = 40), then choose 12 cubes that have not more than 3 painted sides
(4·(27−8−11) = 32 > 11), and 6 cubes with not more than 5 painted sides (6·(27−8−12−5) =
12 > 11). After that Peter will be able to put these cubes in the corners, edges and centers
of the sides correspondingly and accomplish his task. A little different solution can be found
in the 0-junior level, 8-9 grades, problem 5b.

(b) Solution. In the case n = 1000 it is enough for Vasya to paint two opposite sides of
10003 − 7 cubes, i.e. 1999999986 sides. Then outside facet of one of the corner cubes will be
painted in any construction of the big cube. In the same time, if Vasya has painted not more
than 2 · (10003 − 7)− 1 = 2 · 10003 − 15 sides, than Peter is able to choose 8 cubes with not
more than 1 painted side (2 · (10003− 7) > 2 · 10003− 15), then choose 12 · 998, with not more
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than 3 painted sides (4 · (10003− 8− 12 · 998+1) > 2 · 10003− 15), and 6 · 9982 with not more
than 5 painted sides (6 · (10003 − 8− 12 · 998− 6 · 9982 + 1) > 2 · 10003 − 15). Then Peter is
able to construct white from the outside cube.



1

International Mathematics
TOURNAMENT OF THE TOWNS

Junior A-Level Paper Spring 2006.

1. A pool table has a shape of a 2× 1 rectangle; there are six pockets: one in each corner, and
one in the midpoint of each of the long sides of the table. What is the minimal number of
balls one needs to put on the table so that every pocket lies on the same line with at least
two balls? (Consider pockets and balls as points.) (B.R. Frenkin)

Answer. 4 balls.
Solution. The example for 4 balls is given on the pic-
ture. Let us show that 3 balls are not enough. Straight
line passing through two balls inside the rectangle in-
tersects its boundary at exactly two points. We have
6 pockets, so we need at least 3 straight lines. Three
balls creates three lines if and only if these balls form a
triangle. However, all possible straight lines are drawn
on the picture and none of them form a triangle with
vertices inside the pool table.

2. Prove that one can find 100 pairs of integers with the following property: in the decimal
representation of each integer, each digit is greater or equal to 6, and the product of the two
integers in the pair is also an integer whose decimal representation has no digits less than 6.
(S.I. Tokarev, A.V.Shapovalov)

Solution. All pairs (7, 9. . . 97) are in use to our problem since their products are equal to
67. . . 79.

3. Assume an acute triangle ABC is given. Two equal rectangles, ABMN and LBCK, are
drawn on the sides AB and BC in the outside. Given that AB = LB, prove that the straight
lines AL, NK, and MC are concurrent. (A.Gavriluk)

A C

B

D

N

M L

K
O

P
Q

Solution 2. Draw a parallelogram
ABCD. Then ALKD and CDNM are
also parallelograms. Isosceles 4CBM
can be obtained from 4ABL by the
rotation by 90◦ and homothety, thus
CM ⊥ AL, but then and CM ⊥ KD.
Continuation of MC, height CQ in the
isosceles triangle KCD is its median,
consequently CM is the perpendicular
from the midpoint of KD. Similarly
AL is the perpendicular from the mid-
point of ND. Parallelogram OPDQ
is a rectangle, hence triangle KDN is
right-angled, and perpendiculars from
the midpoints of its legs pass through
the midpoint of the hypotenuse KN .
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Solution 1. Consider escribed circles for the given rectangles. Denote their second point
of intersection by O. Then ∠BON = ∠BOK = 90◦. Hence points N , O, K are situated
on the straight line perpendicular to BO. Observe that angles NBA and LBK are equal
(since corresponding triangles are equal). Since angles leaning on one edge are equal, we get
the equalities: ∠NOA = ∠NBA = ∠LBK = ∠LOK, consequently points A, O, L are also
situated on a straight line. Similarly points M, C, O are situated on a straight line. Thus O is
the common point of these straight lines. Remark. Perpendicularity of AL and CM can be
proved without rotating homothety, just using angles counting. Assume ∠ABC = b. In the
isosceles triangles ABL and MBC angles B are equal to b + 90◦, consequently other angles
are equal to 45◦ − b/2. This means that

∠AOC = 180◦∠OAC∠OCA = 180◦∠BAC∠BCA+2(45◦−b/2) = ∠ABC+2(45◦−b/2) = 90◦.

4. Does there exists a positive integer n such that the leftmost digit in the decimal representation
of 2n is 5, while the leftmost digit in the decimal representation of 5n is 2? (G.A.Galperin)

Solution. No. Observe that 2n ·5n = 10n. If in decimal notations of 2n and 5n we change all
digits except first for zeros each number decreases but no more than in two times. Product of
new numbers will be less than 10n, but not greater than in 4 times, therefore, it is not equal
to 10. . . 0. However if one of the changed numbers had leftmost digit 5, while other one had
leftmost digit 2, then product would be equal to 50 . . . 0 · 20 . . . 0 = 10 . . . 0. Contradiction.

5. Rectangular table of the size 2005× 2006 is filled with integers 0, 1, and 2 in such a way that
the sum of integers in each row and each column of the table is divisible by 3. What is the
maximal number of 1’s in such a configuration? (I.I. Bogdanov)

Solution. Assume there are n zeros and d twos in the table. We have 2005 rows of the length
2006 and 2006 columns of the length 2005. In order to the sum of integers in a row be divisible
by 3 there should be at least one two or at least two zeros. Hence d + n/2 ≥ 2005. Similarly,
there should be at least one zero or two twos in each column, consequently n + d/2 ≥ 2006.
Summing these inequalities and dividing by 3/2 we obtain n + d ≥ 2674, i.e. the number if
ones is not greater than 2005 · 2006− 2674.

0 0 1 1 . . . 1 1

1 1 0 0 . . . 1 1

. . . . . . . . . . . . . . . . . . . . .

1 1 1 1 . . . 2 1

1 1 1 1 . . . 2 1

1 1 1 1 . . . 1 2

1 1 1 1 . . . 2 1

Now consider the table with n = 1338 and d =
1336. Arrange 1338 zeros in horizontal pairs be-
ginning from the upper left corner (in 669 rows
and 1338 columns) and 1336 twos in vertical pairs
beginning from the lower right corner (in 1336
rows and 668 columns) and fill all the rest squares
with ones (look at the picture to the right). Since
669+1336=2005 and 1338+668=2006 there will
be zeros and twos in each row and each column
and their amounts will be right for making sums
of each row and column divisible by 3. So the an-
swer is: the maximum number of ones is equal to
2005 · 2006− 2674 = 4022030.
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6. A curvilinear polygon is by definition a polygon whose edges are circle arcs. Does there exist
a curvilinear polygon P and a point A on its boundary such that every line passing through
A divides the boundary of the polygon into two pieces of equal total length? (S.V. Markelov)

Solution. Yes, it exists, consider the upper picture. Take an arbitrary segment which has
A as its midpoint and draw half of the circle with this segment as diameter, and at the other
side of the segment two halves of the circles with halves of the segment as diameters. The
perimeter of the figure is equal to the twice the length of the smaller circle.

It is obvious that initial segment divides the perimeter into two equal parts. Draw any other
straight line through the point A denote the angle between this straight line and initial segment
by u (measured in radians; look at the lower picture). The length of the upper part upper
decreased by the length of the arc a and increased by the length of the arc b. We are going
to prove that these lengths are equal. Denote by r the radius of the smaller circle. Since we
have the inscribed angle b = 2ur. Larger circles radius is 2r, but the angle for it is central,
this means that a = u · 2r.

A A u

b

a

7. George and Jake are each given an identical copy of a 5 × 5 table filled with 25 pairwise
different integers. George chooses the maximal integer in his table, then deletes the row and
the column which contain this integer, then chooses the maximal integer in the remaining
4 × 4 table, then deletes the row and the column, and so on. Jake does the same, but each
time he chooses the minimal integer, not the maximal one. Can it be that in the end, the
sum of the 5 integers chosen by Jake is

(a) greater than the sum of the 5 integers chosen by George?

(b) greater than the sum of any other 5 integers from the original table chosen so that no
two of them lie in the same row, not in the same column?

(S.I.Tokarev, A.Y. Avnin)

Solution. (a) No, it cant. Denote the Georges numbers in the order of their selection by
b0, b1, b2, b3, b4, and Jakes ones by m0, m1, m2, m3, m4. Let us show that if i + j < 5,
then bi ≥ mj. Number is equal to the amount of rows and columns erased when the number
is being chosen. For example, when we are choosing b1 one row and one column is erased,
while for m3 3 rows and 3 columns. Summing, we obtain that the amount of erased rows
and columns is not greater than 4, thus at least one number a was not erased in both cases.
George was choosing the maximum numbers, consequently b1 ≥ a. Jake was choosing the
minimum ones and a ≥ m3. Hence b1 ≥ m3. Similarly b0 ≥ m4, b2 ≥ m2, b3 ≥ m1, b4 ≥ m0.
This means that Georges sum is not less than Jakes one.

(b) Solution 1. Yes, it can. Consider the left table:

10000 1001 1002 1003 1004
1005 1000 101 102 103
1006 104 100 11 12
1007 105 13 10 2
1008 106 14 3 1

111 210 310 410 510
120 221 320 420 520
130 230 331 430 530
140 240 340 441 540
150 250 350 450 551
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Here the sum of the numbers chosen by Jake is equal to 11111 (they are marked). Let us show
that it is not possible to obtain greater sum. If we do not take the number 10000, then the
sum will be less than 1008 ·5 = 5040, so we have to take it 10000. Similarly after taking 10000
we have to take 1000, then 100, then 10 and finally 1. As a result we obtain Jakes numbers.

Solution. 2. Yes, it can. Consider the right table:

Let us add in the column numbers from any admissible collection. At the leftmost digit sum is
equal to the number of diagonal numbers in the collection. At the tens digit for any collection
its sum is equal to 1+2+3+4+5 (this digit depends on the row and we have members from
each row). Similarly, at the hundreds digit the sum is equal to 1+2+3+4+5 (this digit depend
only on the column). Thus the collection of diagonal numbers has the maximum sum. But it
is evident that Jake chooses them.
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1. Assume a convex polygon with 100 vertices is given. Prove that one can chose 50 points inside
the polygon in such a way that every vertex lies on a line passing through two of the chosen
points. (B.R.Frenkin)

Solution. Enumerate vertices of the polygon in a clockwise order: 1, . . . , 100. Consider
polygon consisting of 10 vertices: 1, 2, 21, 22, 41, 42, 61, 62, 81, 82. Its vertices lay on the 5
straight lines 1-22, 21-42, 41-62, 61-82, 81-2, which are given by 5 points of intersections (the
first straight line with the second one, the second one with the third one . . . the fifth one with
the second one, it is evident, that all these points are different ). Repeat this for the decagons
with numbers of vertices that can be obtained from the numbers of considered decagon by
adding 2, 4, . . . , 18. This problem has lots of different solutions.

2. Do there exist positive integers n and k such that the decimal representation of 2n contains
the decimal representation of 5k as its leftmost part, while the decimal representation of 5n

contains the decimal representation of 2k as its leftmost part? (G.A.Galperin)

Answer: No, they doesnt exist.

Solution If for some positive integer n the number 2n starts by 5k and the number 5n by
2k then this means that 5k × 10s < 2n < (5k + 1) × 10s and 2k × 10l < 5n < (2k + 1) × 10l,
thus 10k+l+s < 10n < 10k+l+s+1, which is impossible. (Last inequality 10n < 10k+l+s+1 is true,
because 5k + 1 < 2× 5k and 2k + 1 < 5× 2k).

3. Consider the polynomial P (x) = x4 + x3 − 3x2 + x + 2. Prove that for every positive integer
k, the polynomial P (x)k has at least one negative coefficient. (M.I.Malkin)

Solution 1. Observe that for any polynomial P (x) its value in the point x = 1 is equal to
the sum of all coefficients. Consequently, the sum of the coefficients of the polynomial P (x)n

is equal to P (1)n = (1+1−3+1+2)n = 2n. But the free term of P (x)n is equal to P (0)n = 2n,
while the coefficient at x4n is equal to 1, and their sum is already 2n + 1. Hence one of the
remaining coefficients of P (x)n is negative.

Solution 2. The coefficient at x3 for the polynomial P (x)n can be obtained by adding n
items 2n−1x3 and n(n− 1) items −3x2 × x× 2n−2, consequently this coefficient is equal

n · 2n−1 − 3n(n− 1)2n−2 = 2n−2(−3n2 + 5n) = n · 2n−2(−3n + 5),

which is negative number for an arbitrary integer n ≥ 2.

Solution 3. Observe that P (0)n = P (1)n = 2n. But any polynomial F with positive
coefficients is strongly monotonic when x > 0 (i.e. x > y > 0 =⇒ F (x) > F (y) > 0). This
means that polynomial P (x)n has at least one negative coefficient.

4. Consider a triangle ABC, take the angle bisector AA′, and assume given a point X on the
interval AA′. Assume that the line BX intersects the line AC in a point denoted B′, while
the line CX intersects the line AB in a point denoted C ′. Assume also that the intervals A′B′

and CC ′ meet in a point denoted P , and the intervals A′C ′ and BB′ meet in a point denoted
Q. Prove that the angles PAC and QAB are equal. (M.A. Volchkevich)
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Solution. Denote by hM(l) the distance from the point M to the straight line l. We will
use the following simple

Lemma 1. if three rays OL, OM and ON , are given then for all points K on the ray OM
the ration hK(OL)/hK(ON) is the same.

For the solution of the given problem it is enough to prove that

hP (AC)/hP (AA′) = hQ(AB)/hQ(AA′)

(this equality together with equality of angles A′AC and A′BC means that angles PAC
and QAB are equal). Using lemma we obtain hP (BC)/hP (AC) = hX(BC)/hX(AC) and
hQ(BC)/hQ(AB) = hX(BC)/hX(AB), consequently (since hX(AC) = hX(AB), because
X lays on the bisector AA′) hP (BC)/hP (AC) = hQ(BC)/hQ(AB). So it is enough to
prove that hP (BC)/hP (AA′) = hQ(BC)/hQ(AA′). By lemma 1 the latter is equivalent to
hB′(BC)/hB′(AA′) = hC′(BC)/hC′(AA′).

Denote ∠BAC = 2α. Observe that hB′(AB)/hB′(AA′) = sin 2α/ sin α = hC′(AC)/hC ′(AA′).
Now it is enough to prove that hB′(BC)/hB′(AB) = hC′(BC)/hC′(AC). Applying lemma
again this transforms into hX(BC)/hX(AB) = hX(BC)/hX(AC), which is evident (since
hX(AC) = hX(AB)). The proof is finished.

5. Prove that there exist infinitely many pairs of integers with the following property: in the
decimal representation of each integer, each digit is greater or equal to 7, and the product of
the two integers in the pair is also an integer whose decimal representation has no digits less
than 7. (S.I.Tokarev)

Solution 1. All the pairs (9 . . . 98877, 8 . . . 87) where in the first and second numbers
amounts of the digits are equal are right for this problem. Their product (it can be shown
using multiplication “in column”) is equal to 8 . . . 878887 . . . 79899 (there are n− 3 eights at
the beginning, then 7888, and then n− 3 sevens).

Solution 2. Consider numbers 877. . . 7 (k-1 sevens) and 899. . . 9987 (k-3 nines), their prod-
uct is equal to the 7899. . . 998788. . . 8899 (k − 4 nines and k − 2 eights).

6. Twelve grasshoppers sit on a circle in 12 pairwise distinct points. These points split the circle
into 12 arcs. When a signal is given, the grasshoppers jump simultaneously; each one jumps
clockwise, from the endpoint of his arc to its midpoint. Thus 12 news are formed; then the
signal is repeated, and so on. Is it possible that at least one grasshopper returns to his original
position after he does

(a) 12 jumps?

(b) 13 jumps?

(A.K.Tolpygo)

Answer: (a),( b) No, it is not.

(a) Solution 1. Let us call 12 simultaneous jumps of grasshoppers “turn”. Assume that one
of the grasshoppers (call him first) returned to the starting point (denote it by A) after 12
turns. Observe that order of the grasshoppers on the circle doesnt change. Thus the remaining
11 grasshoppers have jump over the point A (at least once) before the first grasshopper returns
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there. But in one turn not more than one grasshopper jumps over the point A, while in the
first turn no grasshoppers jump over the point A! Consequently in 12 turns no more than 11
grasshoppers can jump over the point A, and the first one is not able to come back.

(a) Solution 2. Observe that our situation is equivalent to the following one: we arrange the
infinite amount of grasshoppers along the ray OM at the beginning placing 12 grasshoppers,
just unrolling the circle into a segment by cutting it at the starting point of the grasshopper
#1 (assume that clockwise bypass of the circle coincides with positive direction of the axis
Ox). Then we think that the first grasshopper starts only at the left end of the segment
(point 0). And attach to the right end the same segment with grasshoppers at the same
points and so on (we obtained the ray with marked points A1, A2, . . . ). In this new model
grasshoppers jump in positive direction into the midpoint of the segment, connecting this and
next grasshopper. Now we want to prove that after 12 jumps the first grasshopper is to the
left from the point A13.

Let us prove using induction that after n jumps the i-th grasshopper is at the centre of mass
of the system (

(Ai, C(0, n)g), (Ai+1, C(1, n)g), . . . , (Ai+n, C(n, n)g)
)

(the first factor is the position of object, second is its mass, C(k, n) = n!/(k! · (n− k)!)).

It is obvious that after first jump this proposition is true. Assume that after n jumps the i-th
grasshopper is at the centre of mass of the system(

(Ai, C(0, n)g), (Ai+1, C(1, n)g), . . . , (Ai+n, C(n, n)g)
)

and the (i + 1)-th at the centre of mass of(
(Ai+1, C(0, n)g), (Ai+2, C(1, n)g), . . . , (Ai+n+1, C(n, n)g)

)
.

Then the midpoint of the segment connecting them has the same coordinates as the centre of
mass of the system(

C. of M.
(
(Ai, C(0, n)g), (Ai+1, C(1, n)g), . . . , (Ai+n, C(n, n)g)

)
,

C. of M.
(
(Ai+1, C(0, n)g), (Ai+2, C(1, n)g), . . . , (Ai+n+1, C(n, n)g)

))
which is the same the centre of mass of(

(Ai, C(0, n)g), (Ai+1, (C(1, n) + C(0, n))g), . . . ,

(Ai+n, (C(n, n) + C(n− 1, n))g)), (Ai+n+1, C(n, n)g)
)
,

and this is the centre of mass of the system (Ai, C(0, n+1)g), . . . (Ai +n+1, C(n+1, n+1)g).
Proposition is proved.

The proved proposition means that after 12 jumps the first grasshopper is in the centre of mass
of the system ((A1, C(0, 12)g), . . . , (A13, C(12, 12)g). It is obvious that this point is inside the
segment [A1, A13].

(b). In this case after 13 jumps the first grasshopper is in the centre if mass of the system
((A1, C(0, 13)g), . . . , (A14, C(13, 13)g). But the same point can be represented as the centre
of mass of two points with some masses in them: the first one is

C. of M. ((A2, C(1, 13)g), . . . , (A13, C(12, 13)g),
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and the second one is

C. of M. ((A1, C(0, 13)g), (A14, C(13, 13)g).

It is evident that the first point is inside the segment [A1, A13]. Also C(0, 13) = C(13, 13) and
A1A2 = A13A14, hence the second point is inside the segment [A1, A13] too. Consequently and
the centre of mass of these two points with arbitrary masses is inside the segment [A1, A13].

7. An ant crawls along a fixed closed trajectory along the edges of a dodecahedron, never turning
back. The trajectory contains each edge of the dodecahedron exactly twice. Prove that the
ant passes at least one edge in the same direction both times. (Reminder: a dodecahedron is
a polyhedron with 20 vertices, 30 edges and 12 equal pentagonal faces; 3 faces meet at each
vertex.) (A.V. Shapovalov)

Solution. Assume the trajectory passing through each edge in both directions exist. Con-
sider a vertex A and three its neighbors B, C, D. Assume that at some moment of time the
ant comes to the point A from the point B then after it he crawls to the point C or D. If
he chose C, then at some other moment he comes from C to A and turns to D (otherwise
there is D → A → D in the trajectory, which is impossible). Similarly, when the ant comes
from D to A he turns to B. Summing up, we proved that there are 2 kinds of crossroads
(B → A → C, C → A → D, D → A → B) and (if at the beginning the ant choose not C
but D) (B → A → D, D → A → C, C → A → B). This two kinds of crossroads can be
described using the simple rule: in the first case ant always turns left at the crossroad, and in
the second one he always turns right. Now mark out for each crossroad its type. Observe that
if the ant starts his movement from some vertex going along some edge, then all its trajectory
can be reconstructed using only these marks. So each collection of the marks on the vertices
corresponds to some collection of closed and non-intersecting (by an edge, passing in the same
direction) trajectories (although, we do not clam that this collection of trajectories is unique,
we do not need this).

We assume that at the beginning there is one such closed trajectory passing through each
edges two times. Now by turns change the marks on the vertices with the rule “turn to the
left” to the marks “turn to the right”. It is possible that after the very first operation our big
trajectory splat into multiple. But it is evident that some closed trajectories that we obtain
are unambiguously defined. Let us study how the amount of the trajectories can change when
we change the marks. We want to prove that it remains odd. Suppose we have a crossroad
(B → A → C, C → A → D, D → A → B). Consider different cases of the trajectories
passing through A configurations:

(a) We have 3 different closed trajectories (B → A → C → · · · → B), (C → A → D →
· · · → C), and (D → A → B → · · · → D), then after the mark is changed we obtain
(C → A → B → · · · → D → A → C → · · · → B → A → D → · · · → C), so in this case
total amount decreased by two and remained odd.

(b) We have 2 closed trajectories (B → A → C → . . . B) and (C → A → D → · · · → D →
A → B → · · · → C), after the mark change we obtain (C → A → B → · · · → C) and
(B → A → D → · · · → D → A → C → · · · → B), total amount does not change.

(c) We have one closed trajectory (B → A → C → · · · → C → A → D → · · · → D → A →
B → · · · → B) then after change we obtain (B → A → D → · · · → D → A → C →
· · · → C → A → B → · · · → B). Total amount does not change again.
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Three more cases can be obtained by reversing the considered ones. And all other cases
are just the same after the replacement of the notation. We proved that total amount of
trajectories remains odd. But when all crossroads have marks “turn to the left” on them, the
only way to divide the dodecahedron into closed trajectories is to go round each facet along
its boundary ( i.e. each trajectory consists of 5 edges and goes round one facet). It is evident
that in this case we have 12 trajectories. We obtained the contradiction with oddity of their
amount.


