29TA JYHUOPCKA BAJTKAHCKA MATEMATIYKA
OJIUMIIIIA TA

26. jynu, 2025 Language: Macedonian

Sanaga 1. 3a cure NO3UTUBHU peasiHu OPOEBH a, b U ¢, TOKAXKU JIeKa BaXKu
(a2 +bc)? (b +ca)® (2 +ab)? _ 2abc(a+b+c)?
+ + > .
b+c c+a a+b ab+ bc + ca

Bamaua 2. Onpengenn ru cure 6poeBn 011 0OJIMK
20252025 . ..2025

(cocraBeHU OJ1 €JleH WK NOBeKe HocseoBaTesHn 610kosu 2025) Kou ce II0JHU KBaJpaTH Ha IIPH-
pomau 6poeBH.

Bamaya 3. Heka ABC' e npaBoaroJier Tpuaroiuauk co ZA = 90°, veka D e moaHOXK]je HA BUCHHATA
nosJiedeHa ojf remero A kon BC, u E e cpeaumHara Touka Ha orceukara DC. Onuimanara KpyK-
Huta okoiry AABD ja ceue AE 1o Brop nart Bo Touka F. Heka X e npecednara ToUKa Ha IIpaBUTe
AB u DF. Hokaxu neka XD = XC.

Bama4ya 4. Heka n e nmosurusen e 6poj. Lleaure 6poeBu o1 1 j10 1 ce 3amuImaHu BO TOJUE-ATA O]
n x n tabaa (110 eeH 6POj BO MOJIE) TaKa IITO CEKOj O/ HUB Ce M0jaByBa TOYHO €JHAII BO CEKOja
peJiila U TOYHO eJ[HAIl BO cekoja KoJsiona. Co r; ro o3nadyBame Opojor Ha naposu (a,b) oz 6poesu
Bo i-TroT pej (1 < i < n), TakBU WITO @ > b, HO @ € HAIIUIINAH JIEBO OJ] b (HE MOpa €JIeH JI0 JIPYT).
Co ¢; ro o3nadyBame 6pojoT Ha maposu (a,b) o 6poeBn Bo j-Tara KosoHa (1 < j < n), TakBH IMTO
a > b, HO a e Hanumad Haj b (He Mopa enen 1o apyr). Onpesenu ja HajroJeMara MOKHA BPEIHOCT
Ha 30UpOT
r+reo+---+rpt+crt+ca+---+cy.

3abenernika: Bo n X n tabiara pemguiure 1 10 n ru obeekyBamMe Of TOpe KOH JIOJTY, & KOJIOHUTE
o 1 10 n ru obesiesxyBaMe OJf JIEBO KOH JIECHO.

Bpeme: 4 caawiu u 30 munywiu.
A Cexoja 3agaua epegu 10 Uoenu.
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29TH JUNIOR BALKAN MATHEMATICAL OLYMPIAD
26th June, 2025 Language: English

Problem 1. For all positive real numbers a, b, ¢, prove that
(a2 +be)2 (b +ca)® (2 +ab)? _ 2abc(a+b+c)?
+ + > .
b+c c+a a+b ab+ bc + ca

Problem 2. Determine all numbers of the form
20252025...2025

(consisting of one or more consecutive blocks of 2025) that are perfect squares of positive integers.

Problem 3. Let ABC' be a right-angled triangle with ZA = 90°, let D be the foot of the altitude
from A to BC, and let E be the midpoint of DC. The circumcircle of AABD intersects AF again
at point F. Let X be the intersection of the lines AB and DF. Prove that XD = XC.

Problem 4. Let n be a positive integer. The integers from 1 to n are written in the cells of an
n x n table (one integer per cell) so that each of them appears exactly once in each row and exactly
once in each column. Denote by 7; the number of pairs (a,b) of numbers in the it" row (1 <i < n),
such that a > b, but a is written to the left of b (not necessarily next to it). Denote by c; the
number of pairs (a,b) of numbers in the j** column (1 < j < n), such that a > b, but a is written
above b (not necessarily next to it). Determine the largest possible value of the sum

r+re+--+rptetcato+cn.

Note: In the n x n table we label the rows 1 to n from top to bottom, and we label the columns 1
to n from left to right.

Time: 4 hours and 30 minutes.
A Every problem is worth 10 points.

AAAAAAAAAAA



29th Junior Balkan
Mathematical Olympiad

Problems with Solutions

Problem 1

For all positive real numbers a, b, ¢, prove that

(a® +bc)®> (b +ca)®? (2 +ab)® _ 2abc(a+b+c)?
+ + > :
b+c c+a a+b ab + be + ca

Solutions

Solution 1. Apply Cauchy-Schwarz inequality.

(a? + be)? N (b? + ca)? N (c? + ab)? >
b+c cta a+b

((b+c)+(c—|—a)+(a+b))<

2
<a2—|—b2+02+ab—i—bc+ca)

Lemma. 3(a? 4+ b? 4 c? 4 ab + bc + ca) > 2(a + b+ ¢)?.

Proof.
3(a* + b* + ¢* + ab + be + ca) =
2(a® + % + ¢ 4 2ab + 2bc + 2ca) + (a* + b* + ¢ — ab — be — ca) =
2(a+b+c) + %(a— b)? + %(b—c)2 + %(c—a)Q >2(a+b+c)?,
as desired.

Then we have

4
(a2 + be)? ) (b2 + ca)? . (2 + ab)? N sla+b+c)t :2(a+b+0)3-
b+c c+a a+b 20a+b+c) 9

Again by Cauchy-Schwarz inequality we have

1 1 1
b -+-+-) >0
(a+ +C)<a+b+c>_

Finally, using these we get

2 2 2 2 2 2 2 2
(a® + be) n (b= + ca) n (c* + ab) > 2(a+ b > 2(1a+i)—|—cl) _ 2abc(a + b+ )
b+c c+a a-+b 9 R ab+ be + ca

as desired.
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Solution 2. By using AM-GM we have:

2
(a2 + bc)2 (2\/ a2bc) B a
czy; b+c Zc%; b+c _4abcczy;b+c'

From here, by using Titu's Lemma, we obtain

2

a a
4ab —— = 4ab >
ac;b%—c acczy;ab—i—ac_
(a+b+c)?  2abc(a+b+c)?

4dab =
“ CQ(ab—i— be + ca) ab + bc + ca

as desired.

Solution 3. Using Titu's Lemma and Schur's Inequality, we have

2 2 3 2 itu 3 2
3 (a® + bc) -y (a® + abe) th (3" a® 4 3abc) -
e b+ec e a*(b+c) > a?(b+c)
Schur

> Zaz(b +¢).

cyc

Using the inequality (ab + be + ca)? > 3abc(a + b+ c), we get:

3abc(a + b+ c)

2
E a’(b + c) dabe + (a + b + ¢)(ab + be + ca) > —3abe + (¢ + b + ¢) ab + bc + ca

cyc

Finally, by (a + b+ c)? > 3(ab + bc + ca):

b b
—3abc+(a+b+c)w:
ab + bc + ca
2 2 9
abe [ 54 Latbto) 2abe(a+b+0)® _ 2abe(a+b+c)
Gb+bc+ca ab+bc+ca ab+bc+ca



Problem 2

Determine all numbers of the form
20252025 ...2025

(where the block 2025 is repeated one or more times) that are perfect squares of positive integers.

Solution

We will prove that the only solution is 2025 = 452,

First, observe that the given number is equal to

2025 (1 4104 +108 4.+ 104("—”)

for some n € N. Since 2025 is a perfect square, it must hold that 1 4+ 10% + 108 4 ... 4+ 1041 = 42
(%) for some = € N. Multiplying both sides by 10* — 1 yields

10" — 1 =99992% = 11 - 101 - (3x)?
Applying the difference of squares twice gives

(10" — 1)(10™ +1)(10*™ + 1) = 11- 101 - (3z)%  (»%)

Using the Euclidean algorithm, we see that 10” — 1 and 10" + 1 are coprime (their difference is 2 and they
are both odd). Additionaly, 10" + 1 is coprime with both 10" — 1 and 10™ + 1 since it is coprime with
their product 102® — 1 (same reasoning as before). Hence, all three factors on the left-hand side of (xx)
are pairwise coprime. Since the numbers 11 and 101 are prime, at least one of the factors on the left-hand
side of (%) must be a perfect square.

Lemma 1. The equation 10" 4+ 1 = m? has no solutions in the set of positive integers.

Proof. Reducing modulo 3 implies m? = 2 (mod 3), which cannot hold.
Hence, neither 10?” + 1 nor 10" + 1 can be perfect squares.

Lemma 2. The only solution to the equation 10" —1 = m? in the set of positive integers is (n,m) = (1, 3).

Proof. Consider the equation modulo 4. For n > 2, 10" = 0 (mod 4), hence the right-hand side is
congruent to 3 modulo 4. On the other hand, n = 1 gives m = 3 as a solution.

Lemmas 1 and 2 imply that the only solution to the given equation is (n,z) = (1,1). Therefore, the only
solution is the number 2025. O
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Problem 3. Let AABC be right-angled at A and let D be the foot of altitude from A to BC and let
E be the midpoint of DC. The circumcircle of AABD intersects AE again at point F'. Let X be the
intersection of AB and DF'. Prove that XD = XC.

Solution 1. Since E is the midpoint of DC, it is sufficient to show that XE | DC which is equivalent
to proving that X E || AD. Let H be the intersection of BF' and AD. Since ZADB = 90° = ZAFB =
90° = H is the orthocenter of AABE = EH | AB = EH || AC. Since E is the midpoint of DC
we have that H is also the midpoint of AD. Apply (unoriented) Menelaus theorem in AABH for points
D,F, X and in ABHD for points A, F, E. We get that

AX BFHD _ . _ DE BF HA

XBFHDA =~ EBFHAD’
Since we have that AH = H D the ratios cancel and we get that % = % which implies that AD || XE
by Thales. O

X
A
F
o« K Y
B D E C

Solution 2. Let M be the midpoint of AC. As midsegment in AADC, ME || AD. Also, by Thales’
Theorem in the right AADC, we get MA =MD = MC.

Claim 1. DFME is cyclic. ...(1)
Proof 1. .DFE “B2") yppA — 90° — /DCA = /DAC *PME JENC = /DME, so DEME s
cyclic. o

Proof 2. First we prove that M D is tangent to (ABDF'). Let O be the midpoint of AB and therefore
center of (ABDF'). Then, OA = OD, so by criterion SSS, we get AOAM = AODM, thus ZODM =
ZOAM = 90°.

Now, /MEF "7 ,pAD — /MDF, so DFME is cyclic. o
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Claim 2. X, M, E are collinear.

Proof 1. ZMFX W/ MED = 90° = LM AX, so MFAX is cyclic. ...(2)

/XMAZ /xFA=/DFEY /DME = /CME and since A, M, C are collinear, so are X, M, E. o

Proof 2. Same as in Proof 1, MFAX is cyclic.

/XMF2 s raB YEPY) ppE Y1800 — JFME, so /XME = 180°. o
Y
A
F
=
B D E C

Proof 3. /MAB+ /ZMEB = 90° + 90° = 180°, so M ABE is cyclic. The three pairwise radical axes
of the circles (M ABE), (ABDF) and (DFME) are AB, DF and ME. Then X = AB N DF is their
radical center, so X €¢ M FE. o

Now, X, M, E are collinear, i.e. X lies on the side bisector of DC, so XD = XC. O

Solution 3. Let Y be the intersection of the side bisector of DC with line AB. Then, YD = Y(C
and therefore /Y DC = ZYCD. Also, ZYEC = 90° = LY AC, so YAEC is cyclic. From there,
/BAE =/YCE=/2YCD = /Y DC.

On the other hand, from (ABDF), /ZFDC = /BAF = /BAE.

Therefore, L YDC = /BAE = ZFDC, thus points D, F,Y are collinear, i.e. Y € DF. Since X =
ABNDF, we get Y = X, and therefore XD = XC. O



Problem 4.

Let n be a positive integer. The integers from 1 to n are written in the cells of an n x n table (one integer
per cell) so that each of them appears exactly once in each row and exactly once in each column. Denote
by r; the number of pairs (a,b) of numbers in the i*" row (1 <4 < n), such that a > b, but a is written
to the left of b (not necessarily next to it). Denote by ¢; the number of pairs (a,b) of numbers in the ;"
column (1 < j <n), such that a > b, but a is written above b (not necessarily next to it). Determine the
largest possible value of the sum

r+rot+--t+rptctctFop.

Note: In the n x n table we label the rows 1 to n from top to bottom, and we label the columns 1 to n
from left to right.

Solution

nin—1)(2n —1)
3

Answer:

Suppose z is in position i in some row/column. Then after it there could be at most min(n — i, — 1)
smaller numbers. Having in mind that this bound is separately for the row of x and for the column of z,
as well as that i is different for the different appearances of = (as no row/column has a number appearing
more than once, by the problem condition), we deduce that the contribution of z to the overall sum is at
most

n n—x r—1

2) min(n—i,z—1)=2 Y (n—-i)+2) (z—1)=2> i+2n—=z)(z—1)
=1

i=n—z+1 i=1 =0
=z(z—1)+2(n—z)(z—1)=2n—2)(z —1).

Summing through x = 1,...,n now gives the following upper bound for the sum:

n

Z(Qn—:r)(x—l):(Qn—i—l)zn:x—zn:xz—zn:%z

=1 =1 =1 =1
nn+1)2n+1) n(n+1)2n+1)
2 6

Equality holds e.g. for the table in which the s-th rowisn+1—-s,n—s,...,1,n,n—1,...,n+2 —s,
since for each z in position 7 in a row or column there are indeed exactly min(n — 4,z — 1) smaller numbers
after it. O



