JBMO ShortLists 2012

Algebra

1 Let a, b, c be positive real numbers such that a + b + c = 1. Prove that

$$\frac{a}{b}+\frac{a}{c}+\frac{c}{b}+\frac{c}{a}+\frac{b}{c}+\frac{b}{a}+6\geq 2\sqrt{2}\left(\sqrt{\frac{1-a}{a}}+\sqrt{\frac{1-b}{b}}+\sqrt{\frac{1-c}{c}}\right).$$

When does equality hold?

2 Let a, b, c be positive real numbers such that abc = 1. Show that :

$$\frac{1}{a^3 + bc} + \frac{1}{b^3 + ca} + \frac{1}{c^3 + ab} \le \frac{(ab + bc + ca)^2}{6}$$

3 Let a , b , c be positive real numbers such that $a+b+c=a^2+b^2+c^2$. Prove that :

$$\frac{a^2}{a^2 + ab} + \frac{b^2}{b^2 + bc} + \frac{c^2}{c^2 + ca} \ge \frac{a + b + c}{2}$$

4 Solve the following equation for $x, y, z \in \mathbb{N}$:

$$\left(1+\frac{x}{y+z}\right)^2+\left(1+\frac{y}{z+x}\right)^2+\left(1+\frac{z}{x+y}\right)^2=\frac{27}{4}$$

5 Find the largest positive integer n for which the inequality

$$\frac{a+b+c}{abc+1} + \sqrt[n]{abc} \le \frac{5}{2}$$

holds true for all $a, b, c \in [0, 1]$. Here we make the convention $\sqrt[4]{abc} = abc$.

- Geometry
- Let ABC be an equilateral triangle , and P be a point on the circumcircle of the triangle but distinct from A, B and C. The lines through P and parallel to BC, CA, AB intersect the lines CA, AB, BC at M, N and Q respectively. Prove that M, N and Q are collinear .

- Let ABC be an isosceles triangle with AB = AC. Let also ω be a circle of center K tangent to the line AC at C which intersects the segment BC again at H. Prove that $HK \perp AB$.
- Let AB and CD be chords in a circle of center O with A,B,C,D distinct , and with the lines AB and CD meeting at a right angle at point E. Let also M and N be the midpoints of AC and BD respectively . If $MN\bot OE$, prove that $AD\parallel BC$.
- 4 Let ABC be an acute-angled triangle with circumcircle ω , and let O, H be the triangle's circumcenter and orthocenter respectively. Let also A' be the point where the angle bisector of the angle BAC meets ω . If A'H=AH, then find the measure of the angle BAC.
- Let the circles k_1 and k_2 intersect at two points A and B, and let t be a common tangent of k_1 and k_2 that touches k_1 and k_2 at M and N respectively. If $t \perp AM$ and MN = 2AM, evaluate the angle NMB.
- Let O_1 be a point in the exterior of the circle ω of center O and radius R, and let O_1N , O_1D be the tangent segments from O_1 to the circle. On the segment O_1N consider the point B such that BN=R. Let the line from B parallel to ON intersect the segment O_1D at C. If A is a point on the segment O_1D other than C so that BC=BA=a, and if the incircle of the triangle ABC has radius r, then find the area of $\triangle ABC$ in terms of a,R,r.
- Let MNPQ be a square of side length 1, and A,B,C,D points on the sides MN,NP,PQ and QM respectively such that $AC \cdot BD = \frac{5}{4}$. Can the set $\{AB,BC,CD,DA\}$ be partitioned into two subsets S_1 and S_2 of two elements each , so that each one has the sum of his elements a positive integer?

Combinatorics

- Along a round table are arranged 11 cards with the names (all distinct) of the 11 members of the 16^{th} JBMO Problem Selection Committee . The cards are arranged in a regular polygon manner . Assume that in the first meeting of the Committee none of its 11 members sits in front of the card with his name . Is it possible to rotate the table by some angle so that at the end at least two members sit in front of the card with their names?
- On a board there are n nails, each two connected by a rope. Each rope is colored in one of n given distinct colors. For each three distinct colors, there exist three nails connected with ropes of these three colors.
 - a) Can n be 6?
 - b) Can n be 7?
- In a circle of diameter 1 consider 65 points, no three of them collinear. Prove that there exist three among these points which are the vertices of a triangle with area less than or equal to $\frac{1}{72}$.

_	Number	Theory
	Hallibel	

If a, b are integers and
$$s=a^3+b^3-60ab(a+b)\geq 2012$$
, find the least possible value of s.

2 Do there exist prime numbers
$$p$$
 and q such that $p^2(p^3-1)=q(q+1)$?

$$(\overline{VER} - \overline{IA}) = G^{R^E}(\overline{GRE} + \overline{ECE})$$

assuming that the number \overline{GREECE} has a maximum value .Each letter corresponds to a unique digit from 0 to 9 and different letters correspond to different digits . It's also supposed that all the letters G, E, V and I are different from 0.

4 Determine all triples (m, n, p) satisfying :

$$n^{2p} = m^2 + n^2 + p + 1$$

where m and n are integers and p is a prime number.

5 Find all positive integers x, y, z and t such that $2^x 3^y + 5^z = 7^t$.

If a , b , c , d are integers and $A=2(a-2b+c)^4+2(b-2c+a)^4+2(c-2a+b)^4$, B=d(d+1)(d+2)(d+3)+1 , then prove that $\left(\sqrt{A}+1\right)^2+B$ cannot be a perfect square.

7 Find all $a, b, c \in \mathbb{N}$ for which

$$1997^a + 15^b = 2012^c$$